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Abstract

The present work is a part of a modelling of forest fires fighting by aerial means. In this paper, we study
different kind of closures for modelling two-phase flows with an almost ‘‘infinite range’’ of scales. Since the-
ories like homogenization are not, in this case, relevant for obtaining the equivalent medium equations, the
averaging method has been preferred. The variables are averaged by convolution with a smooth kernel with
compact support, as the equations are non-linear, new quantities are defined in order to obtain the equa-
tions satisfied by averaged quantities; the entropy production is determined and closures or phenomenolo-
gical equations are obtained using the second principle of thermodynamics. Main features of this work are,
firstly a derivation in this framework of a balance equation for the interfacial area concentration and sec-
ondly, since this introduces a new unclosed variable: the mean velocity of interfaces, extended irreversible
thermodynamics is used to obtain the general form of the appropriate closures equations.
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1. Introduction

This paper is a part of a study on the modelling of forest fires fighting with aerial means, espe-
cially by dropping of fluids from aircrafts. Two main kinds of attacks are possible. The first one is
direct attack which consists in dropping directly water on fire. In this case three main effects are
expected: the blast effect due to the impact of fluid on the ground, the direct interaction of drops
with flames (stopping the radiative transfer and cooling the flames) and the cooling of fuel (ve-
getation) in order to stop pyrolysis. The determination of the drop size distribution is a key for
understanding and improving this kind of attack. The second kind of attack is the so called ‘‘indi-
rect attack’’. A chemical additive is added to water. The fluid is dropped ahead of the fire front,
the chemical playing the role of a barrier, the fire can thus be stopped to protect a spot or deviated
to a place where ground fighting is easier. The ground distribution of fluid is the parameter
which determines the effectiveness of the dropping. This part of the study is mainly concerned
with the second kind of dropping. Dropping in Europe are made from an altitude of about
40 m while in North America the altitude is at least 100 m. During the dropping, the fluid
goes out of the tank and will be partly atomized in the case of European dropping and totally
atomized in the case of American dropping. In both case the production of interface is very
important and an Eulerian simulation should take into account this fact. The first results on
the subject have been provided by the USDA forest service in 70s (Swanson and Helvig, 1973,
1974). In these reports, valuable information was provided, as: mechanisms of atomization, many
results of real dropping experiments, and a simple Lagrangian model, named PATSIM, has been
developed in order to foresee ground pattern of dropping. The aim in the present paper is to pro-
vide a first attempt to model this kind of atomization in an Eulerian way. Let us notice that during
the atomization process the Weber number is very high. We will neglect forces due to interfacial
tension.

In this paper the spatial averaging method, with thermodynamic closure, will be used. This
method consists of three steps: firstly balance relations at microscopic level are written in distri-
butional form so that the jump conditions at interface appear as source term in the equations,
secondly the equations are convoluted with a smooth kernel with compact support. As the equa-
tions are non-linear, new quantities are defined so that averaged equations take the form of
balance relations. Thirdly, an entropy is constructed, and closure relations are defined such that
the second thermodynamic principle is satisfied. In this paper, only the question of interaction
between phases is addressed, and closure relations for this force are deduced assuming that both
fluids are incompressible and that the equivalent medium is isothermal. However, consequences of
extended thermodynamic are explored and a closure relation implying memory is obtained. In
order to take into account the interface production, interfacial area concentration and interfacial
velocity are defined by spatial averaging for being consistent with the averaging method. Then an
evolution equation is deduced for these quantities. As the interfacial velocity is a non-closed
quantity, closure relations for this velocity are obtained. Let us finally point out that from the gen-
eral derivation obtained by thermodynamics, we will try systematically to recover empirical
closures.

The paper is divided as follows. The second paragraph is devoted to the recall of the balance
equations at microscopic level in distributional sense, and then these equations are averaged
and new quantities are defined as interaction between phases. In the third paragraph the inter-
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facial area concentration and the interfacial velocity are defined, an equation of evolution for
these quantities is derived. Then in the fourth paragraph the entropy balance relation is derived
and the production of entropy is obtained, by writing that this source term must be positive for all
processes, some closure relations are obtained.

Related works are for the thermodynamics part, the pioneering paper of Bataille and Kestin
(1977) on the thermodynamics of mixture. One can find an interesting generalization to an ex-
tended irreversible thermodynamics modelling of two-phase flow with phase changes by Bilicki
et al. (2002) with a few references therein. Local interfacial area concentration has been intro-
duced (though in a different form) by Ishii (1975) and Delhaye (1976) and recent works on a trans-
port equation for this quantity have been reported by Morel et al. (1999), Delhaye (2001),
Lhuillier et al. (2000), Lhuillier (2003, 2004) and by Veynante and Vervisch (2002) within the
context of combustion theory.
2. Averaged equations of the models

2.1. The microscopic equations

Averaging method is simpler to apply if the physical laws are written in such a way that the
boundary or interface conditions between phases are incorporated in the balance equations (Fitre-
mann, 1977; Marle, 1982). For sake of being self content, let us recall this writing. The two phases
occupy the domains Xk with k = 1, 2. Each quantity ~uk associated to phase k is prolonged by 0
outside its domain of definition, in such a way that the new prolonged quantity �uk is now defined
everywhere. However this quantity is no more a function but becomes a distribution and deriva-
tives must be considered as distributional derivatives. The relations between the definitions of
derivatives are given in the following relations (Estrada and Kanwal, 1980):
o�g
ot

¼ og
ot

þW � nk�gdI

r � �g ¼ r � g� �g � nkdI
r�g ¼ rg � �gnkdI

ð1Þ
In (1), o�g
ot , r�g, and r � �g are derivatives in the distributional sense while og

ot , rg, r � g are functions
derivatives; moreoverW is the interfacial velocity, nk is the exterior normal and dI is the interfacial
Dirac distribution defined by hdI,ui = �Iu(x)dS(x). Let us notice that vk�g ¼ �g, so that we can use
the convenient notation:
r � �g ¼ vkr � �gþ �g � rvk ¼ r � g� �g � nkdI
With these notations the balance equations are the following:
Balance of mass:
o�qk

ot
þr � ð�qkVkÞ þ �qkðVk �WÞ � nkdI ¼ 0 ð2Þ
In this framework, jump conditions on the interface I are naturally included.
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Balance of momentum of the kth phase:
o

ot
ð�qkVkÞ þ r � ð�qkVk � VkÞ ¼ �qkg�r�pk þr � �sk � �qkVkðVk �WÞ � nkdI þ ð��pknk þ �sk � nkÞdI

ð3Þ

The total stress tensor is denoted by Rk ¼ ��pk1þ �sk. The viscous stress tensor is �sk ¼

lkð
trVk þrVkÞ; pk is the pressure. It can again be noticed that, in this framework, jump condi-

tions at the interface are given by the singular part of (3).
Balance of energy:
o

ot
�qk �ek þ

1

2
V

2

k

� �� �
þr � �qk �ek þ

1

2
V

2

k

� �
Vk þ �qk � Rk � Vk

� �

¼ �qkg � Vk � qk þ �qk �ek þ
1

2
V

2

k

� �
ðVk �WÞ � ��pk1þ �skð Þ � Vk

� �
� nkdI ð4Þ
The equation satisfied by the characteristic function vk of the phase k is the so-called topo-
logical equation:
ovk
ot

þr � ðvkVkÞ þ ðVk �WÞ � nkdI ¼ r � Vk ð5Þ
2.2. Averaged equations, and averaged quantities

We can now proceed with the averaging (see Marle (1982) for example). Let us consider now, a
spatial filter or a kernel, W(r,h), which is a mollifier, that is WP 0, �W(r,h)dr = 1, the support of
W is the sphere of radius h, and W !

h!0
d. Quantities and equations will be smoothed by convolu-

tion with this kernel. The volume fraction /k(r, t) of the phase k is defined by:
½/kðr; tÞ� ¼ vk � W ¼
Z

vkðr� r0; tÞW ðr0; hÞdr0 ¼
Z

vkðr0; tÞW ðr� r0; hÞdr0 ð6Þ
So that the averaged value of any quantity �uk is defined by:
/kðr; tÞ½ukðr; tÞ� ¼ ðvk �uÞ � W ¼
Z

vkðr0; tÞ�uðr0; tÞW ðr� r0; hÞdr0 ð7Þ
In relations (6) and (7), we have put between brackets [ ], the newly defined macroscopic quantity
uk. This notation will be used all along this text when new macroscopic quantities are introduced.
It is useful to point out that [ ] is not considered as an averaging operator thought it is related to
the averaging process.

The averaged density is then defined by:
/k½qk� ¼ ðvk�qkÞ � W ð8Þ
Two averaged velocities can be defined; the first one is a ‘‘mass averaged’’ velocity,
/kqk½Vk� ¼ vk�qkVk � W
� �

ð9Þ
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and the second one is a ‘‘volume averaged’’ velocity,
/k½Uk� ¼ vkVk � W ð10Þ

As it will be useful, we can define now as usual, the total density
q ¼
X2
k¼1

qk/k ð11Þ
and the mass average velocity
qV ¼
X2
k¼1

qkVk/k ð12Þ
One can now convolute the balance equations with the kernel W. As the equations are non-
linear, some new ‘‘macroscopic’’ quantities appear. So that, this averaging procedure gives the
macroscopic equations and the new macroscopic quantities:

The topological equation (5) gives:
o/k

ot
þr � /kUkð Þ ¼ xk ð13Þ
with
½xk�ðxÞ ¼
Z
I
vkðyÞr � VkðyÞW ðx� yÞdy�

Z
I
ðVkðyÞ �WðyÞÞ � nkðyÞW ðx� yÞdsðyÞ ð14Þ
The balance of mass (2) becomes:
oð/kqkÞ
ot

þr � ð/kqkVkÞ ¼ �ð�qkðVk �WÞ � nkÞdI � W ð15Þ
One can notice that in the case of condensation (W � Vk) Æ nk > 0, then the mass source term in
(15) is positive which is consistent. The averaged balance of momentum is:
o

ot
ðqk/kVkÞ þ r � ðqk/kVk � VkÞ ¼ qk/kgþr � /krk þ Fmk þ FIk ð16Þ
In relation (16) the following definitions have been used:
qk/kVk � Vk � /k½rk� ¼ ð�qkVk � Vk þ �pk1� �skÞdI � W ð17Þ
½Fmk� ¼ ��qkVkðVk �WÞ � nkdI � W ð18Þ
½FIk� ¼ ð��pknk þ �sk � nkÞdI � W ð19Þ
As usual, we can notice from (17) that the macroscopic stress tensor rk is not the average of the
microscopic tensor �rk.

The averaged energy balance reads:
o

ot
/kqk ek þ

1

2
V2

k

� �� �
þr � /kqk ek þ

1

2
V2

k

� �
Vk þ qk � /krk � Vk

� �

¼ qk/kg � Vk � Pk
o/k

ot
þ Xk þ Y k ð20Þ
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with the following definition for the average internal energy:
qk/k ek½ � þ 1

2
V2

k

� �
¼ �qk �ek þ

1

2
V

2

k

� �
� W ð21Þ
And for the energy supply Xk and Yk due to the interface, the definitions are:
½Xk� � Pk
o/k

ot
¼ ð��qk þ ð��pk1þ �skÞ � VkÞ � nkdI � W ð22Þ

½Y k� ¼ ��qk �ek þ
1

2
V

2

k

� �
ðVk �WÞ � nkdI � W
The heat flux qk can be defined by:
qk/k ek þ
1

2
V2

k

� �
Vk þ ½qk� � /krk � Vk ¼ �qk �ek þ

1

2
V

2

k

� �
Vk þ �qk � �Rk � Vk

� �
�W ð23Þ
Some new terms have been defined and closure relations are needed for them. For the applica-
tions we have in mind, we will assume a ‘‘no slip’’ condition at interfaces so that the interfacial
velocity W is equal to the fluids velocities at interfaces, and then the force Fmk and the energy
transfer term Yk are null. This implies that no phase change does occur. We will be especially con-
cerned with the interaction force FIk defined by relation (19). Usually this force is decomposed in
three parts:
FIk ¼ FLk þ Fvmk þ Ffk
Since a great difference of density between the two fluids is assumed, we will not consider the lift
force FLk. In the same way, the added mass force Fvmk, which is of the same order as the lift force,
will be neglected. It remains to obtain a model for the drag force Ffk. As a closure relation for
interaction force between phase p and phase q, some authors (see Morel (1997) and Drew and
Passman (1998) for an extensive exposition) have proposed expressions like:
F ¼ � 1

8
Aqp CD Vp � Vq

�� �� Vp � Vq

� �� �
A

where the symbol h i stands for interfacial averaging with the probability density distribution
function and A is the interfacial area concentration. The presence of interfacial area concentration
A appears desirable because this quantity partly drives the interaction between phases. In order to
be coherent with our treatment, we have to consider a spatial averaged interfacial area concentra-
tion and not an ensemble averaged density. In the next paragraph we will derive an equation for
the interfacial area concentration.
3. Interfacial area concentration

As mentioned previously, this section will be devoted to the derivation of an adapted equation
for the interfacial area concentration. Let us firstly define this density as coarse-grained surface
area density:
½A� ¼
Z
I
W ðx� y; hÞdsðyÞ ¼ W � dI ð24Þ
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The symbol dI stands for the Dirac measure on the interface I (i.e. dI ;uh i ¼
R
IudS for any func-

tion u indefinitely derivable with compact support. dI can be considered as the fine-grained sur-
face area density. One can verify that as a function of h the relation A !

h!0
dI holds. Let us

emphasize that h is the size of the support of the smoothing function and can be interpreted as
the size of the fluid particle or ‘‘elementary representative volume’’ of the equivalent medium
being constructed.

In the same way the interfacial mean velocity is defined by:
A VI½ � ¼
Z
I
W ðx� y; hÞVðy; tÞdsðyÞ ¼ W � VdIð Þ ð25Þ
Let us consider the total (or material time) derivative of A, from (24) we obtain using a transport
theorem for surface integral:
dAðx; tÞ
dt

¼
Z
I
rW � Vx � Vy

� �
dsðyÞ þ

Z
I
W ðx� yÞ r � V�rV : n� nð ÞdsðyÞ
The symbol � represents the tensorial product and $V : n � n is the contracted product of the two
tensors. Then we obtain:
dAðx; tÞ
dt

¼ Vðx; tÞ �
Z
I
rW dsðyÞ �

Z
I
rW � Vðy; tÞdsðyÞ

þ
Z
I
W ðx� yÞ r � V�rV : n� nð Þds
As for distributions, convolution and derivation can commute, the first term of the right hand
side can be written Vðx; tÞ �

R
IrW dsðyÞ ¼ Vðx; tÞ � rxA and likely the second term is $x Æ (AVI).

We obtain then
dA
dt

¼ rxA � Vðx; tÞ � rx � AVIð Þ þ
Z
I
W ðx� yÞ r � V�rV : n� nð Þds
But taking into account that
dA
dt

¼ oA
ot

þrxA � Vðx; tÞ
and after a simplification, the result reads:
oA
ot

þr � AVIð Þ ¼
Z
I
W ðx� yÞ r � V�rV : n� nð Þds ð26Þ
Let us point out that using space averaging circumvents potential mathematical problems (re-
lated to measure theory) and physical problem (related to ergodicity and ensemble averaging).
Another advantage of using volume averaging is that the right hand side of (26) can be simplified
using a ‘‘surface green formula’’ (cf. the Lemma 1 given in Appendix A):
Z

I
W ðx� yÞ r � V�rV : n� nð Þds ¼

Z
I

oW
on

þ CW
� �

V � nds

þ
Z
C
W VS � nv dl�

Z
I
V � rW ds ð27Þ
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where C is the mean curvature of the interface, VS is the tangential component of the velocity V, C
is the line boundary of the interface I, nv is the unit vector normal to C. Using $S the gradient and
the divergence operator on the surface (Aris, 1962), we can obtain:
Z

I
W ðx� yÞ r � V�rV : n� nð Þds ¼

Z
I
fCW V � ngdsþ

Z
C
W VS � nv dl

�
Z
I
rS � ðW VSÞ � WrS � ðVSÞds

� �
ð28Þ
We can use now the Stoke�s theorem on the interface I, taking into account the possible dis-
continuities lines Ci of the tangent velocity on the interface, and we obtain:
Z

I
W ðx� yÞ r � V�rV : n� nð Þds ¼

Z
I

CW V � nf gdsþ
Z
I
WrS � VS ds

þ
Xn
i¼1

Z
Ci\I

W sVS � nvtdl ð29Þ
where the symbol s t stands for the discontinuity of the bracketed quantity on crossing the line Ci.
For instance, sVS Æ nvt = (VL� VR) Æ nv in the left case of Fig. 1 and more generally, sVS � nvt ¼
VL � nLv � VR � nRv , when the unit normal, tangent to the discontinuity line, differs between the left
and right side of the discontinuity. Thus the evolution equation for the interfacial area concentra-
tion is:
oA
ot

þr � AVIð Þ ¼ Sc þ Se þ Sfc ð30Þ
The right hand side of (30) contains three source terms:
Sc ¼
Z
I
WCV � nds ð31Þ
this term corresponds to the presence of curvature,
Ss ¼
Z
I
WrS � VS ds ð32Þ
Liquid

Liquid

VL

VR

nν

Γi
R
νn

L
νn

VL

VR

Fig. 1. Discontinuity of surface velocity during breakup.
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this term corresponds to the stretching of the interface, and
Sfc ¼
Xn
i¼1

Z
Ci\I

W sVS � nvtdl ð33Þ
which corresponds, because of the possible discontinuities of the normal (or of the tangent
plane), to fragmentation and coalescence of drops. The following relation will be used in the
following:
S ¼ Sc þ Ss þ Sfc ð34Þ

Of course the final form of (30) is similar to the one proposed initially by Ishii (1975). It is

fruitful to compare this result with the same kind of equation derived recently by other authors.
Actually Eq. (26) can be related to (Lhuillier, 2003) formulation:
odI
ot

þ V � rdI ¼ �dInn � rV ð35Þ
Relation (35) is written in the distributional sense and then averaged over different realisations
of the physical phenomena. Previously, Lhuillier et al. (2000) had derived the following
relation:
odI
ot

þr � ðVI � nÞndIð Þ ¼ ðVI � nÞr � ndI þ SV ð36Þ
let us remind that, as mentioned earlier, if h tends to 0, A !h!0
dI and AVI !

h!0
VIdI then (36) is

similar to (30) in the limit h ! 0 but does not contain the stretching term, and the source term
SV is not defined. In another older work, Morel (1997) had obtained the relation:
dA
dt

¼ d

dt

Z
V
dI ¼ �

Z
I\oV

VI � nð Þn �N signðn �NÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðn �NÞ2

q dC þ
Z
I\oV

VI � nð Þr � ndS þ
Z
V
SV dV

ð37Þ
where N is a unit vector, normal and exterior to the surface oV, boundary of the volume V, and
n is the unit vector normal to the interface I. Eq. (37) has been demonstrated to be equivalent
to (36) by Lhuillier et al. (2000), but the source term is still not given. Previously, Candel and
Poinsot (1990) derived the following equation for the evolution of the fine-grained flame surface
density:
/S ¼
1

dI

d

dt
ðdIÞ ¼ �n� n : rVþr � Vþ SLr � n
relation which is equivalent to (35), but where a flame front velocity SL has been introduced. In
this work, the division by the surface distribution dI seems to be simply a convenient notation and
is not used any more in the recent review by Veynante and Vervisch (2002).

Eqs. (30)–(33) is thus similar to (36) but in the latter, all the source terms are fully written. As
far as we know, space averaging seems to be the only way to compute completely this source term.
As a matter of fact, this term is related to fragmentation and coalescence events which lead to sin-
gularities of the surface (cf. Fig. 1). This effect seems to be difficult to obtain by statistical



906 O. Séro-Guillaume, N. Rimbert / International Journal of Multiphase Flow 31 (2005) 897–920
averaging of the fine-grained density dI. Lastly, let us notice that (30)–(33) is completely similar to
an equation obtained by Marle (1982), in a different manner, within the context of porous media.
4. Closure relations

In the preceding section, new quantities (VI,Se,Sfc,Sc) where introduced which can be rigor-
ously computed if the velocity field on the interface is perfectly known. This however cannot
be done for most numerical computations of two-phase flow where the size of fluid blobs can
be much smaller than the size of the computing mesh. These quantities are thus, for most com-
putations, unclosed quantities and closures relations are needed. In the following section, accept-
able form of the closure relations for VI and the interfacial momentum transfer will be
determined. Empirical closures for the mean interfacial velocity are VI = V (Vallet and Borghi,
1999) and VI = /1V2 + /2V1 (Lhuillier, 2004) which was introduced in order to recover Ishii
(1975)�s first results that interfacial velocity should be equal to the dispersed phase velocity in
the case of diluted mixtures. In the present work, closures relations will be obtained by writing
down the balance of entropy and then by writing that the entropy production is positive. Actually,
the entropy is constructed in such a way to have a positive production term. This method has been
often used as a tool for obtaining ‘‘equivalent medium’’ equations, or homogenized equations.
Without being exhaustive, Marle (1982) is a good reference for porous medium. In order to cope
with non-thermodynamic equilibrium situation, different kind of thermodynamics can be used
mainly the EIT (extended irreversible thermodynamic) developed in Jou et al. (1996) and the
RET (rational extended thermodynamic) developed in Müller et al. (1998). In these theories,
the space of the state variables upon which the entropy may depend, is enlarged. Particularly dis-
sipative fluxes can be introduced. We will consider at the end of this section a consequence of
using such extended entropies. Calculations will be undertaken using EIT (which leads to simpler
calculations than RET and is equivalent to RET in the linear approximation); but the entropy
that is being used can also be considered, as in RET, as a mathematical entropy ensuring that
the resulting hyperbolic system of conservation law is mathematically well posed.
4.1. Entropy balance

Generally the entropy balance equation is written:
q
ds
dt

¼ �r � Js þ rs ð38Þ
Js is the entropy flux and rs is the entropy production. The total entropy can be constructed from
the specific entropy of each separate phase and in the case without interfacial concentration one
can consider:
s ¼
X2
k¼1

cksk where ck ¼
/kqk

q
ð39Þ
Functions sk (extended partial entropies) will depend a priori upon internal energies ek, specific
volumes 1/qk and mass fractions ck.
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There are several ways to introduce the entropy dependency with the interfacial area concen-
tration. We will firstly suppose that the entropy is defined by:
s ¼
X2
k¼1

cksk þ UðAÞ ð40Þ
where U is a convex function of A. Here, the interface is considered as a third medium different
from both fluids. Its main advantage comes from the ease of introducing interfacial chemical reac-
tions. Moreover identification of equilibrium surface tension is rather straightforward. Rigor-
ously, one should write down all the necessary balance equations (mass, momentum and
energy) for the interfacial medium, this is Marle�s original point of view. Here it will be assumed
that the mass of this third medium is infinitesimally small, thus all the balance equations written
so far are sufficient to describe the evolution of the mixture.

In the second point of view, the interfacial area is considered as an internal variable for each
phase ‘‘which means that in practice, these variables are measurable but not controllable . . .’’
(Maugin and Muschik, 1994). Then, the entropy will be written using (39). And the associated
Gibbs-like relation will be written:
Hk dsk ¼ dek þPkd
1

qk

� �
�Mk dck þHk

osk
opi

dpi ð41Þ
where Hk ¼ oek
osk

;Pk ¼ �Hkq2
k
osk
oqk

;Mk ¼ �Hk
osk
ock

and the pi are the internal variables (here, inter-

facial area) not to be confounded with pressure; the variables Hk, Pk and Mk are non-equilibrium
variables that we will suppose equal to their equilibrium values mainly Tk for the temperature, Pk

for the pressure and lk for chemical potential. As demonstrated in Jou et al. (1996) this corre-
sponds to a first order expansion. Then (41) takes the following form:
T k dsk ¼ dek þ Pkd
1

qk

� �
� lk dck þ T k

osk
opi

dpi ð42Þ
4.1.1. Entropy balance equation with internal variables
Let us derive the entropy balance equation in the general context of irreversible thermodyna-

mics with internal variables. The derivation of (39) leads to:
ds
dt

¼
X2
k¼1

dðkÞck
dt

sk þ
dðkÞsk
dt

ck � skV
dr
k � rck � ckV

dr
k � rsk

 !
ð43Þ
In (43) dðkÞ

dt ¼ o
ot þ Vk � r is the derivative along the motion of phase k and Vdr

k is the drift
velocity, defined by:
Vdr
k ¼ Vk � V ð44Þ
The relation between the two derivatives is:
dðkÞ

dt
¼ d

dt
þ Vk � Vð Þ � r ¼ d

dt
þ Vdr

k � r ð45Þ
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In order to calculate the entropy derivative in (43) we need to compute the derivative of partial
entropies along the flow of the phase k. It will be done using relation (42):
T k
dðkÞsk
dt

¼ dðkÞek
dt

� Pk

q2
k

dðkÞqk

dt
� lk

dðkÞck
dt

þ T k
osk
opi

dðkÞpi
dt

ð46Þ
After introducing the mass fraction one obtains:
ck
dðkÞsk
dt

¼ /kqk

T kq
dðkÞek
dt

� /kqk

T kq
Pk

q2
k

dðkÞqk

dt
� /kqk

T kq
lk

dðkÞck
dt

þ /kqk

q
osk
opi

dðkÞpi
dt

ð47Þ
In (47) the following derivatives are needed: dðkÞek
dt ; d

ðkÞqk
dt ; d

ðkÞck
dt . The variation of internal energy is

obtained substituting kinetic energy obtained from balance of momentum (16) in the energy
balance (20), after some algebra one obtains:
/kqk
dðkÞek
dt

þr � qk ¼ �Pk
o/k

ot
þ X k þ /krk : rVk � FIk � Vk ð48Þ
The variation of density is:
1

qk

dðkÞqk

dt
¼ � 1

/k
xk þr � /kðVk �UkÞð Þ ð49Þ
And the variation of mass fraction is given by:
dðkÞck
dt

¼ � 1

q
r � /kqkV

dr
k

� �
þ Vdr

k � rck ð50Þ
The variation of the parameters pi will be discussed in a special section. Once (48)–(50) are substi-
tuted in (47), one obtains after calculation:
qck
dðkÞsk
dt

¼ � 1

T k
r � qk �

1

T k
Pk

o/k

ot
þ 1

T k
X k þ

1

T k
/krk : rVk �

1

T k
FIk � Vk

þ Pk

T k
xk þr � /kðVk �UkÞð Þ þ lk

T k
r � ck/kqkV

dr
k

� �
� 2

1

T k
lk/kqkV

dr
k � rck þ qck

osk
opi

dðkÞpi
dt

ð51Þ
For convenience and since the final form of entropy variation (38) is desired, relation (51) will be
put in the following form:
qck
dðkÞsk
dt

¼ �r � JðkÞ
s þ rðkÞ

s þ qck
osk
opi

dðkÞpi
dt

¼ �r � JðkÞ
s þ r0;ðkÞ

s þ r1;ðkÞ
s þ r2;ðkÞ

s þ qck
osk
opi

dðkÞpi
dt

ð52Þ
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In relation (52), the following definitions have been used:
JðkÞ
s ¼ 1

T k
qk þ /kP kVk � Pk/k Vk �Ukð Þ � cklk/kqkV

dr
k

� �
ð53Þ

r0;ðkÞ
s ¼ � Pk

T k

o/k

ot
þ Xk

T k
þ Pkxk

T k
ð54Þ

r1;ðkÞ
s ¼ qk þ Pk/kUk � /kqkcklkV

dr
k

� �
� r 1

T k

� 1

T k
Vk � FIk �r/kP kð Þ � 1

T k
/k Vk �Ukð Þ � rPk ð55Þ

� 1

T k
/kqkckV

dr
k � rlk � 2

1

T k
lk/kqkV

dr
k � rck

r2;ðkÞ
s ¼ /k

r
o
k : rVk

_
�

T k
ð56Þ
where the stress and strain rate tensors have been split in spherical and deviatoric part: (De Groot
and Mazur, 1962)
rVk ¼
1

3
r � Vkð Þ1þrVk

_
�

rk ¼ �Pk1þ r
o
k

The contracted product of these two tensors now reads:
rk : rVk ¼ �Pkr � Vkð Þ þ r
o
k : rVk

_
�

ð57Þ

One can notice that the first upper index of the entropy source terms in (53)–(56) indicates the

tensorial order of the quantities taken into account. They sum in the following way:
rðkÞ
s ¼ r0;ðkÞ

s þ r1;ðkÞ
s þ r2;ðkÞ

s ð58Þ

There are different possibilities in the definition of the entropy flux and source terms. Actually,

it is either possible to write /kPk$ Æ (Vk) or $ Æ (/kPkVk) � Vk Æ $(/kPk). It is somewhat a matter
of choice and the latter case has been chosen here. The consequences of this choice will be
analyzed further in this paper.

Substituting relations (52) in relation (43), using notations (53)–(56) one obtains:
q
ds
dt

¼
X2
k¼1

ð�r � ðJðkÞ
s � qckskV

dr
k Þ þ rðkÞ

s Þ þ
X2
k¼1

qck
osk
opi

dðkÞpi
dt

ð59Þ
Relation (59) will be put in the form (38), that is:
q
ds
dt

¼ �r � Js þ rs þ
X2
k¼1

qck
osk
opi

dðkÞpi
dt

ð60Þ
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4.2. Entropy source and flux due to the interfacial area concentration variation

4.2.1. Interfacial area as a property of a third medium
Here, entropy is defined by (40) and pi is set equal to A in (42). Therefore:
q
ds
dt

¼ q
X2
k¼1

dcksk
dt

þ q
oU
oA

dA
dt

ð61Þ
Let us define Ti the temperature of the interface by q oU
oA ¼ c

T i
where c can be considered as a

surface tension between both fluids. Among the different ways of writing sources and fluxes of
entropy, one can choose:
JI
s ¼ 0 ð62Þ

rI
s ¼

c
T i

ðS � Ar � VI þ ðV� VIÞ � rAÞ ð63Þ
Let us consider that each fluid is incompressible, that the heat flux is null, the interfacial coef-
ficient is constant and that there is no chemical reactions, so that chemical potentials are constant.
Moreover, as it is often assumed, let us assume that there is only one pressure and one tempera-
ture so that Ti = T. The fluxes and entropy sources simplify in:
Js ¼
X2
k¼1

/kP
T

Vk þ sk �
ck
T
lk

	 

/kqkV

dr
k ð64Þ

r0
s ¼

X2
k¼1

� P
T
o/k

ot
þ X k

T

� �
þ c
T

S � Ar � VIð Þ; ð65Þ

r1
s ¼

X2
k¼1

� 1

T
Vk � FIk �r/kPð Þ

�
�2

1

T
lk/kqkV

dr
k .rck

�
þ c
T

V� VIð Þ.rA; ð66Þ

r2
s ¼

X2
k¼1

/k rk
o
: rVk

_
�

T
ð67Þ
Considering the first order tensorial terms (66), writing all the coupling in linear approximation
(thermodynamic forces are supposed to be proportional to fluxes), one gets.
Fk ¼ FIk �r /kPð Þ ¼
X2
p¼1

�
�LFkVpVp � LFkrcp2lp/pqprcp

�
þ LFkrA

c
T
rA ð68Þ

Vdr
k ¼

X2
p¼1

�
� LVdr

k Vp
Vp � LVdr

k rcp2lp/pqprcp

�
þ c
T
LVdr

k rArA ð69Þ

Vdr
I ¼

X2
p¼1

LVdr
I Vp

Vp þ LVdr
I rcp2lp/pqprcp

	 

þ c
T
LVdr

I rArA ð70Þ
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One can notice that the contribution $(/kP) has been subtracted to the interaction force. The
appearance of this term is related to the choice of the entropy flux and source terms previously
mentioned. However, this is a standard contribution which can also be obtained for instance,
through ensemble averaging of microscopic two-phase flow equation (Chen et al., 1996, thought
it is a two pressures model).

The most general linear closure relations for this problem can be summarized in matrix
notation by:
F1

F2

Vdr
1

Vdr
2

Vdr
I

0
BBBBBBB@

1
CCCCCCCA

¼

�LF1V1
�LF1V2

�LF1rc1 �LF1rc2 LF1rA

�LF2V1
�LF2V2

�LF2rc1 �LF2rc2 LF2rA

�LVdr
1
V1

�LVdr
1
V2

�LVdr
1
rc1

�LVdr
1
rc2

LVdr
1
rA

�LVdr
2
V1

�LVdr
2
V2

�LVdr
2
rc1

�LVdr
2
rc2

LVdr
2
rA

LVdr
I V1

LVdr
I V2

LVdr
I rc1

LVdr
I rc2

�LVdr
I rA

0
BBBBBBBB@

1
CCCCCCCCA
.

V1

V2

2l1q1/1rc1

2l2q2/2rc2
c
T rA

0
BBBBBBB@

1
CCCCCCCA

ð71Þ
In order to ensure a positive entropy production term the matrix in (71) has to be definite positive
and the Onsager reciprocity relations imply that this matrix is symmetric, that is:
LFpVq ¼ tLFqVp ð72Þ
LVdr

p Vk
¼ tLFkrcp ð73Þ

LVdr
p rcq ¼

tLVdr
q rcp ð74Þ

LVdr
I Vp

¼ tLFprq ð75Þ

LVdr
I rcp ¼

tLVdr
p rA ð76Þ
Moreover, if one assumes that the interaction force between phases is Galilean invariant, the
following relations must hold:
LFqVq ¼ �LFqVp ; p 6¼ q ð77Þ
The interfacial velocity VI is thus related to the velocity of the different phases and to the
gradient of the interfacial area concentration in the following (yet undetermined) way:
Vdr
I ¼ LVdr

I V1
V1 þ LVdr

I V2
V2 þ 2l1q1/1LVdr

I rc1
rc1 þ 2l2q2/2LVdr

I rc2
rc2 � LVdr

I rA

c
T
rA ð78Þ
Indeed some of the effects in the preceding relations may not really be coupled, and suppressing
some of the coupling can lead to the following closures:
F1

F2

Vdr
1

Vdr
2

Vdr
I

0
BBBBBBB@

1
CCCCCCCA

¼

�LF1V1
�LF1V2

0 0 0

�LF2V1
�LF2V2

0 0 0

0 0 �LVdr
1
rc1

0 0

0 0 0 �LVdr
2
rc2

0

0 0 0 0 �LVdr
I rA

0
BBBBBBBB@

1
CCCCCCCCA

V1

V2

2l1q1/1rc1

2l2q2/2rc1
c
T rA

0
BBBBBBB@

1
CCCCCCCA

ð79Þ
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We then obtain for the interfacial velocity the following relation:
VI � V ¼ � c
T
LVdr

I rArA ð80Þ
The interfacial velocity is thus equal to the mass averaged velocity plus an interfacial area
diffusion term. This term should disappear when the mixture is translating uniformly. Actually,
considering c

T LVdr
I rA as a turbulent diffusivity, (80) reduces to the closure of Vallet and Borghi

(1999).
One can also recover the Lhuillier�s (2004) closure VI = /1V2 + /2V1 from relation (78), setting:
LVdr
I V1

¼ q2/
2
2 � q1/

2
1

q1/1 þ q2/2

1 and LVdr
I V2

¼ q1/
2
1 � q2/

2
2

q1/1 þ q2/2

1 ð81Þ
From (81), it can be noticed that LVdr
I V1

þ LVdr
I V2

¼ 0; so that using (71) and Onsager symmetry

relations, Newton third law F1 + F2 = 0 is enforced.
One can thus conclude that the main empirical closures are compatible with the present

thermodynamic framework.
As for the coupling coefficients LFqVq , they can be considered as a function of the interfacial area

concentration A, which is null if A = 0, then LFqVq ¼ ACFqVqðT q;qq;A; . . .Þ, so that:
F1 ¼ �ACF1V1
ðV1 � V2Þ ð82Þ

F2 ¼ �ACF2V1
ðV2 � V1Þ
4.2.2. Interfacial area as an inner variable
At thermodynamic equilibrium the interfacial coefficient (interfacial free energy) is defined

by:
ck ¼ qkT k
osk
oA

ð83Þ
As we have done for temperature, pressure and chemical potential, we will suppose that the pre-
ceding relation holds outside equilibrium. The derivative of the interfacial area concentration
along the motion of the kth phase is:
dðkÞA
dt

¼ Vk � rA�r � AVIð Þ þ S ð84Þ
then the missing term, giving the contribution of interfacial area concentration in (60) can be
written:
X2
k¼1

/kck
T k

dðkÞA
dt

¼
X2
k¼1

/kck
T k

Vk

 !
� rAþ

X2
k¼1

/kck
T k

 !
S �r � AVIð Þð Þ ð85Þ
From relation (85), one can identify the interface entropy flux. The decomposition of the right
hand side of the entropy variation (38) in divergence of a flux and a source term is not unique,
and is again, in some way, a matter of choice. One can choose:
JI
s ¼ 0 ð86Þ
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and
rI
s ¼

X2
k¼1

/kck
T k

Vk

 !
� rA�

X2
k¼1

/kck
T k

VI

 !
� rAþ S

X2
k¼1

/kck
T k

 !
þ A

X2
k¼1

/kck
T k

 !
r � VI

ð87Þ

Relation (86) introduces the interfacial free energy (with respect to the vacuum) c1 and c2 of

each fluid separately. It is convenient to introduce their relative interfacial tension. This can be
done using Girifalco and Good (1957) model of interfacial tension:
c ¼ c1 þ c2 � 2/
ffiffiffiffiffiffiffiffi
c1c2

p ð88Þ

where / is a (new) parameter of order unity introduced to take into account the nature of the
intermolecular interactions (inside and between each phase). Another interesting choice, which
introduces two parameters, is Fowkes (1962) model of interfacial tension:
c ¼ c1 þ c2 � 2
ffiffiffiffiffiffiffiffiffi
cd1c

d
2

q
ð89Þ
where cd1 and cd2 are the part of the interfacial free energies c1 and c2 which come from Debye�s
dipolar interactions. Using either model, one can define:
a ¼

P2
k¼1

ck/k

c
ð90Þ

U ¼

P2
k¼1

ck/kVk

P2
k¼1

ck/k

ð91Þ
Once these relations are substituted in (86) and considering a one temperature model, we
obtain:
rI
s ¼

ac
T

S þr � VIð Þ þ ca
T

U� VIð Þ � rA ð92Þ
which leads to:
Js ¼
X2
k¼1

/kP
T

Vk þ sk �
ck
T
lk

	 

/kqkV

dr
k ð93Þ

r0
s ¼

X2
k¼1

� P
T
o/k

ot
þ Xk

T

� �
þ ac

T
S þr � VIð Þ ð94Þ

r1
s ¼

X2
k¼1

� 1

T
Vk � FIk �r/kPð Þ

�
�2

1

T
lk/kqkV

dr
k � rck

�
þ ca

T
U� VIð Þ � rA ð95Þ

r2
s ¼

X2
k¼1

/k rk
o
: rVk

_
�

T
ð96Þ
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Now let us again concentrate on entropy sources terms due to first order tensors. Considering
that thermodynamic forces are proportional to fluxes, one can write:
Fk ¼ FIk �r /kPð Þ ¼
X2
p¼1

�LFkVpVp � LFkrcp2lp/pqprcp þ LFkrA
c
T
rA ð97Þ

Vdr
k ¼

X2
p¼1

�LVdr
k Vp

Vp � LVdr
k rcp2lp/pqprcp þ

c
T
LVdr

k rArA ð98Þ

U� VI ¼
X2
p¼1

LVIVpVp þ LVIrcp2lp/pqprcp þ a
c
T
LVIrArA ð99Þ
Therefore:
F1

F2

Vdr
1

Vdr
2

U� VI

0
BBBBBB@

1
CCCCCCA

¼

�LF1V1
�LF1V2

�LF1rc1 �LF1rc2 LF1rA

�LF2V1
�LF2V2

�LF2rc1 �LF2rc2 LF2rA

�LVdr
1
V1

�LVdr
1
V2

�LVdr
1
rc1

�LVdr
1
rc2

LVdr
1
rA

�LVdr
2
V1

�LVdr
2
V2

�LVdr
2
rc1

�LVdr
2
rc2

LVdr
2
rA

LVIV1
LVIV2

LVIrc1 LVIrc2 LVIrA

0
BBBBBB@

1
CCCCCCA
.

V1

V2

2l1q1/1rc1
2l2q2/2rc2

a c
T rA

0
BBBBBB@

1
CCCCCCA

ð100Þ

Then, again, the entropy production term is non-negative if the matrix in (100) is definite positive
and the Onsager reciprocity relations imply that it shall be symmetric. Moreover, if one assumes
that the interaction force between phases is Galilean invariant, the following relations must also
hold:
LFqVq ¼ �LFqVp ; p 6¼ q ð101Þ
The interfacial velocity VI is thus related to the velocity of the different phases and to the
gradient of the interfacial area concentration in the following way:
U� VI ¼ LVIV1
V1 þ LVIV2

V2 þ 2l1q1/1LVIrc1rc1 þ 2l2q2/2LVIrc2rc2 þ LVIrA
c
T
arA

ð102Þ

After suppressing some of the coupling, one gets:
F1

F2

Vdr
1

Vdr
2

U� VI

0
BBBBBB@

1
CCCCCCA

¼

�LF1V1
�LF1V2

0 0 0

�LF2V1
�LF2V2

0 0 0

0 0 �LVdr
1
rc1

0 0

0 0 0 �LVdrs
2

rc2
0

0 0 0 0 LVIrA

0
BBBBBB@

1
CCCCCCA
.

V1

V2

2l1q1/1rc1
2l2q2/2rc1

a c
T rA

0
BBBBBB@

1
CCCCCCA

ð103Þ
The following relation for the interfacial velocity is obtained:
VI ¼ U� c
T
aLVIrArA ð104Þ
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the involved velocity U is an average of the phases velocities weighted by the interfacial free ener-
gies instead of the densities. The two closures (80) and (104), although they are similar, provide
different results for a mixing of fluids with different density ratio and surface energy ratio. For
instance, using data from Girifalco and Good (1957), the ratio of the density of mercury and
water is 13.6 whereas the ratio of surface energies is 6.6 (for hexane and water the ratios are
0.66 and 0.25).

As in Section 4.2.1, one can recover Lhuillier�s (2004) closure. A simple computation shows that
the following form for the different coefficients is needed:
LVIV1
¼ c1/1

c1/1 þ c2/2

� /2

� �
1 and LVIV2

¼ c2/2

c1/1 þ c2/2

� /1

� �
1 ð105Þ
Moreover, Newton third law is also verified and relations similar to (82) are obtained.

4.3. Non-linear and extended thermodynamic closures

As mentioned earlier, extended irreversible thermodynamic consists in introducing the dissipa-
tive fluxes in the entropy. We will consider, in this section, consequences of this assumption and
extend the preceding closure (82). We will, for sake of simplicity, apply this formalism only on the
interfacial forces. Surprisingly the dissipative fluxes are here the forces and the following deriva-
tion will mimic the one of Jou et al. (1996) for viscoelastic rheological law, and the ones of Séro-
Guillaume et al. (2002), for porous media. Let us consider that the internal parameter is the
interaction force so that:
qk/k
osk
opi

dðkÞpi
dt

¼ qk/k
osk
oFi

dðkÞFi

dt
¼ qk/k

T
Vsi

dðkÞFi

dt
ð106Þ
In (106) we have defined the ‘‘thermodynamic conjugate’’ velocity Vsi by Vsi ¼ T os
oFi
. This velocity

can be considered as a functional of the real velocity Vi, and it is null if Vi � 0 . Then we can set
Vsi = s(A,T, . . .)Vi, s being a priori a second order tensor. With this definition the entropy produc-
tion due to first order tensors is:
r1
s ¼

X2
k¼1

� 1

T
Vk � s � d

ðkÞFk

dt
þ Fk

 !
� 2

1

T
lk/kqkV

dr
k .rck

( )
þ ca

T
U� VIð Þ � rA ð107Þ
If we consider the coupling only with velocities, in a linear hypothesis, using the same arguments
than previously, the closure relation for the force is:
s � d
ðkÞFk

dt
þ Fk ¼ �AL�1

FV. Vk � Vp 6¼k

� �
ð108Þ
In fact the factor s � dðkÞFk
dt þ Fk depends as a functional of the drift velocity and (108) represents a

first order expansion of this functional, at second order we could write:
s � d
ðkÞFk

dt
þ Fk ¼ �AqCðReÞ Vk � Vp 6¼k

�� ��ðVk � Vp 6¼kÞ ð109Þ
where Re is a Reynolds number which could be related to the slip velocity and the inverse of inter-
facial area concentration. s is a tensor which introduces a characteristic time for the vector Fk.
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This is a simple way to take into account memory effects akin to the Basset force for instance.
However s remains to be determined.
5. Conclusion

In this paper we have studied a modelling of two-phase flow with interfacial area concentra-
tion considered either as a third parameter or as an internal parameter. An exact transport
equation for the interfacial area concentration has been obtained. The space averaging method
has been used, but let us notice that we could have used averaging in space and time, the
results would be the same (Estrada et al., 1980). All the closures of equations have been obtained
by a thermodynamic argument. This led to the closure relations (108) and (109) for the interac-
tion force between phases, which include a memory effect and an interfacial area concentra-
tion dependence. Moreover, two points of view on the dependency of entropy upon surface
density A have led to two different closures for the mean interfacial velocity. Considering the
interface as a third medium, we have obtained the relation (78) between the interfacial veloc-
ity, the densities averaged velocity, and the gradient of interfacial area concentration. Considering
the interface as an inner variable, we obtained the relation (102) similar to (78) but where
the velocity average is weighted by the surface energies. With relation (78) we can recover the
closure of Vallet and Borghi, whereas both (78) and (102) can provide the Lhuillier�s closure.
Of course the determination of the coefficients in all closure relations for interfacial velocity
should be determined by real experiments or more probably by numerical experiments. Closures
for the source term in interfacial equation, mainly the term defined in (31)–(33) have not been ad-
dressed in this paper. The closure for zeroth order tensorial terms and second order tensorial
terms has not been considered either. Especially for strain–stress relation, it is beyond the scope
of this paper, as many efforts have been done to obtain rheological law for two-phase fluid (Brink-
man, 1952; Roscoe, 1952; Bataille et al., 1977; Lhuillier, 2003). It can be noticed that extended
irreversible thermodynamic could provide a guideline for obtaining viscoelastic law (Jou et al.,
1996).
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Appendix A

Lemma 1. Let oX be a C2 surface and f a C1ðR3;RÞ function. Let s be a smooth vector field whose
gradient will be written $s, then the following integration formula hold:
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Z
oX

s � rf þ f ðdivs�rs : n� nÞf gds ¼
Z
oX

of
on

þ Cf
� �

s � n
� �

dsþ
Z
C
f ss � nm dl
where C is the mean curvature, s is the projection of s on the tangent plane to oX, and nv is the
unitary vector normal to the edge C of oX (Fig. A.1).

Demonstration:
Let D be an open neighbourhood of R2 such that oX admits the following local coordinate on D:
x3 ¼ wDðx1; x2Þ () WDðx1; x2; x3Þ ¼ 0
Let us define the mapping:
ŵD : D � R2 ! R3

ðx1; x2Þ7!ðx1; x2;wDðx1; x2ÞÞ
then a surface integral can be written using local coordinate neighbourhoods D and local
mappings ŵD:
Z

oX
f ds ¼

X
D

Z
D
f � ŵD rWDj jdx1 dx2
where:
rWDj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ w2

D;1 þ w2
D;2

q

In the following, just one local coordinate neighbourhood D will be taken into account.
Firstly, let us notice that if f 2 C1ðR2;RÞ, then
of
oxj

� ŵ ¼ o

oxj
ðf � ŵÞ � o

ox3
ðf � ŵÞ ow

oxj
; j ¼ 1; 2 and

of
ox3

� ŵ ¼ o

ox3
ðf � ŵÞ
The same kind of relation holds for a smooth vector field s:
ðr � s� hrs : n� niÞ � ŵ¼ ðsi;jdij � si;jninjÞ � ŵ¼ ðdij � ðni � ŵÞðnj � ŵÞÞðsi � ŵÞ;j þRiðsi � ŵÞ;3

Ri ¼�
X2
j¼1

ðdij � ðni � ŵÞðnj � ŵÞÞ
ow
oxj

þ di3 � ðni � ŵÞðn3 � ŵÞ
Fig. A.1. Definition of nv, the unitary vector normal to the edge C of oX.
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As
n ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ w2

;1 þ w2
;2

q w;1

w;2

�1

�������

this leads to the fact that Ri = 0 for i = 1, 2, 3.

So that the following integral can be decomposed as follows:
I ¼
Z
D
f � ŵDðr � s�rs : n� nÞ � ŵD rWDj jdx1 dx2

¼
X3
i¼1

X2
j¼1

Z
D
f � ŵDðdij � ninjÞðsi � ŵDÞ rWDj j;jdx1 dx2
Using Green formula this leads to the following
I ¼ I0 þ I1 þ I2

I0 ¼
X3
i¼1

X2
j¼1

Z
D
ððf � ŵDÞðdij � ninjÞðsi � ŵDÞ rWDj jÞ;jdx1 dx2

I1 ¼ �
X3
i¼1

X2
j¼1

Z
D
ðf � ŵDÞ;jðdij � ninjÞðsi � ŵDÞ rWDj jdx1 dx2

I2 ¼ �
X3
i¼1

X2
j¼1

Z
D
ðf � ŵDÞðsi � ŵDÞððdij � ninjÞ rWDj jÞ;jdx1 dx2
Using the divergence theorem on I0, and summing on all local mappings, the following term
appears:
Z

C
f ss.nm dl
As for I1, one gets:
X2
j¼1

ðf � ŵDÞ;jðdij � ninjÞ ¼
X2
j¼1

ðf;j � ŵDÞðdij � ninjÞ þ f;3 � ŵD

X2
j¼1

ŵD;jðdij � ninjÞ
As Ri = 0 the sum in the second term on the right hand side can be replaced by:
di3 � ðni � ŵÞðn3 � ŵÞ
so that
X2
j¼1

ðf � ŵDÞ;jðdij � ninjÞ ¼
X3
j¼1

ðf;j � ŵDÞðdij � ninjÞ ¼ ðf;i � nif;jnjÞ � ŵD
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For I2 one gets:
X2
j¼1

ððdij � ninjÞ rWDj jÞ;j ¼ �niC rWDj j
with:
C ¼

o
2w
ox21

1þ ow
ox1

� �2
 !

þ o
2w
ox21

1þ ow
ox1

� �2
 !

� 2
o
2w

ox1ox2

ow
ox2

ow
ox1

1þ ow
ox1

� �2

þ ow
ox2

� �2
 !3=2
which is the mean curvature (Aris, 1962).
It follows that:
I1 þ I2 ¼ �
X3
i¼1

Z
D
ðsi � ŵDÞðf;i � nif;jnj � niCf Þ � ŵD rWDj jdx1 dx2
Summing on all the local coordinate neighbourhoods leads to
I1 þ I2 ¼ �
Z
oX

rf � sdS þ
Z
oX

of
on

þ Cf
� �

s � ndS
So that the lemma is proved. We can notice that in the preceding demonstration dij � ninj is the
projection operator onto the surface. Indeed let us define
Vs ¼ V� ðV � nÞn

then
V sj ¼ V j � ðV iniÞnj ¼ ðdij � ninjÞV i
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Morel, C., Goreaud, N., Delhaye, J.-M., 1999. The local volumetric interfacial area transport equation: derivation and

physical significance. Int. J. Multiphase Flow 25, 1099–1128.
Müller, I., Ruggeri, T., Myeller, I., 1998. Rational Extended Thermodynamics. Springer.
Roscoe, R., 1952. The viscosity of suspensions of rigid spheres. Br. J. Appl. Phys. 3, 267–269.
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